Ultrastructure of Glial Brain Tumors and Pathomorphological Assessment of Changes after Cryodestruction

B. V. Martynov

Military Medical Academy named after S.M. Kirov, st. Academician Lebedeva, b. 6, lit. “B”, St. Petersburg, 194044, Russian Federation.

L. S. Onishchenko

Military Medical Academy named after S.M. Kirov, st. Academician Lebedeva, b. 6, lit. “B”, St. Petersburg, 194044, Russian Federation.

O. V. Kostina

Military Medical Academy named after S.M. Kirov, st. Academician Lebedeva, b. 6, lit. “B”, St. Petersburg, 194044, Russian Federation.

A. I. Kholyavin

Military Medical Academy named after S.M. Kirov, st. Academician Lebedeva, b. 6, lit. “B”, St. Petersburg, 194044, Russian Federation and N.P. Behtereva Institute of the Human Brain of the Russian Academy of Sciences, st. Academician Pavlova, b. 12, lit. “A”, Saint-Petersburg, 197376, Russian Federation.

A. E. Korovin

Military Medical Academy named after S.M. Kirov, st. Academician Lebedeva, b. 6, lit. “B”, St. Petersburg, 194044, Russian Federation.

K. A. Chemodakova

Military Medical Academy named after S.M. Kirov, st. Academician Lebedeva, b. 6, lit. “B”, St. Petersburg, 194044, Russian Federation.

A. A. Rafaelyan

Military Medical Academy named after S.M. Kirov, st. Academician Lebedeva, b. 6, lit. “B”, St. Petersburg, 194044, Russian Federation.

N. K. Vasileva

Military Medical Academy named after S.M. Kirov, st. Academician Lebedeva, b. 6, lit. “B”, St. Petersburg, 194044, Russian Federation.

E. Yu. Klimenkova *

Military Medical Academy named after S.M. Kirov, st. Academician Lebedeva, b. 6, lit. “B”, St. Petersburg, 194044, Russian Federation.

D. A. Volk

Military Medical Academy named after S.M. Kirov, st. Academician Lebedeva, b. 6, lit. “B”, St. Petersburg, 194044, Russian Federation.

A. I. Yakovenko

Military Medical Academy named after S.M. Kirov, st. Academician Lebedeva, b. 6, lit. “B”, St. Petersburg, 194044, Russian Federation.

D. I. Grigorievsky

Military Medical Academy named after S.M. Kirov, st. Academician Lebedeva, b. 6, lit. “B”, St. Petersburg, 194044, Russian Federation.

V. N. Aleksandrov

Military Medical Academy named after S.M. Kirov, st. Academician Lebedeva, b. 6, lit. “B”, St. Petersburg, 194044, Russian Federation.

M. Y. Prokudin

Military Medical Academy named after S.M. Kirov, st. Academician Lebedeva, b. 6, lit. “B”, St. Petersburg, 194044, Russian Federation.

V. S. Chirsky

Military Medical Academy named after S.M. Kirov, st. Academician Lebedeva, b. 6, lit. “B”, St. Petersburg, 194044, Russian Federation.

I. S. Zheleznyak

Military Medical Academy named after S.M. Kirov, st. Academician Lebedeva, b. 6, lit. “B”, St. Petersburg, 194044, Russian Federation.

D. V. Svistov

Military Medical Academy named after S.M. Kirov, st. Academician Lebedeva, b. 6, lit. “B”, St. Petersburg, 194044, Russian Federation.

E. N. Imyanitov

NMRC of Oncology named after N.N. Petrov of MoH of Russia, 68 Leningradskaya str., Pesochny, Saint Petersburg, 197758, Russian Federation.

*Author to whom correspondence should be addressed.


Abstract

Background: The role of cryosurgery in modern oncological practice is steadily growing now. Stereotactic cryodestruction of gliomas is one of minimally invasive techniques that helps to carry out more sparing surgical interventions in patients with glial tumors of deep, functionally significant structures. This study was aimed at studying the effects of cryoablation at the cellular level.

Materials and Methods: The authors analyzed the results of histological examination of the surgical material of 6 patients with supratentorial glial brain tumors of various degrees of malignancy. The sampling of the material for the study was carried out immediately before the introduction and after the extraction of the cryoprobe.

Results: A comparative electron microscopic examination in the areas of glial tumors after the cryodestruction showed manifestations of its gross destruction: ruptures of nervous tissue, fragmentation of the cytolemma and karyolemma, vacuoles of various sizes, including near the nucleus, various disorders of the chromatin structure, accumulation of gliofibrils in the absence of other organelles. The structure of myelin fibers in the glioma site after the cryotherapy was very diverse: there were myelin fibers with intense myelinopathy and axonopathy. The neuropile around the cells had a low electron density, or bundles of gliofibrils were found in it.

Conclusions: At EME of tumor tissue we found not only the specific, previously described signs of damage at the tissue level, but also the ultrastructural changes. The presented results show that the tumor cryodestruction not only results in direct destruction of tumor cells, but also triggers other mechanisms of glioma cell death. The above points to the need for prospective randomized controlled clinical studies with a large number of patients to determine the effectiveness of this promising method for the treatment of patients with glial brain tumors.

Keywords: Glioma, cryodestruction, electronic microscopy, histopathology


How to Cite

Martynov, B. V., Onishchenko, L. S., Kostina, O. V., Kholyavin , A. I., Korovin , A. E., Chemodakova, K. A., Rafaelyan, A. A., Vasileva, N. K., Klimenkova , E. Y., Volk, D. A., Yakovenko, A. I., Grigorievsky, D. I., Aleksandrov, V. N., Prokudin, M. Y., Chirsky, V. S., Zheleznyak, I. S., Svistov, D. V., & Imyanitov, E. N. (2023). Ultrastructure of Glial Brain Tumors and Pathomorphological Assessment of Changes after Cryodestruction. Asian Oncology Research Journal, 6(1), 34–45. Retrieved from https://journalaorj.com/index.php/AORJ/article/view/75

Downloads

Download data is not yet available.

References

Prohorov GG, Belyaev AM, Prohorov DG. Fundamentals of clinical cryomedicine. Saint Petersburg – Moscow: Kniga po trebovaniyu; 2017. ISBN 978-5-519-50992-3.

Gage AA, Baust JG. Cryosurgery for tumors. J Am Coll Surg. 2007;205(2):342-356. DOI:10.1016/j.jamcollsurg.2007.03.007. PMID: 17660083.

Kandel EI, Peresedov VV. Stereotaxic evacuation of spontaneous intracerebral hematomas. J Neurosurg. 1985;62(2):206-213. DOI:10.3171/jns.1985.62.2.0206. PMID: 3881565.

Maroon JC, Onik G, Quigley MR, Bailes JE, Wilberger JE, Kennerdell JS. Cryosurgery re-visited for the removal and destruction of brain, spinal and orbital tumours. Neurol Res. 1992;14(4):294- 302. DOI:10.1080/01616412.1992.11740073. PMID: 1360623.

Martynov BV, Kholyavin AI, Nizkovolos VB, Parfenov VE, Trufanov GE, Svistov DV. Stereotactic Cryodestruction of Gliomas. Prog Neurol Surg. 2018;32:27-38. DOI:10.1159/000469677.PMID: 29990971.

Khalikov AD. The use of magnetic resonance imaging during stereotaxic operations on the brain and in the postoperative period. Saint Petersburg: Dissertation abstract for the degree of candidate of medical sciences, Military Medical Academy named after S. M. Kirov; 2001.

Li M, Zhang S, Zhou Y, Guo Y, Jiang X, Miao L. Argon-helium cryosurgery for treatment of C6 gliomas in rats and its effect on cellular immunity. Technol Cancer Res Treat. 2010;9(1):87-94. DOI:10.1177/153303461000900110. PMID: 20082534

Li M, Liu J, Zhang SZ, et al. Cellular immunologic response to primary cryoablation of C6 gliomas in rats. Technol Cancer Res Treat. 2011;10(1):95- 100. DOI:10.7785/tcrt.2012.500183.PMID: 21214292

Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6):803-820. DOI:10.1007/s00401-016-1545-1. PMID: 27157931.

Anichkov AD, Nizkovolos VB. 1998. Device for cryosurgical impact. RU. Patent 2115377, July 20.

Gage AA, Baust J. Mechanisms of tissue injury in cryosurgery. Cryobiology. 1998;37(3):171-186.

DOI:10.1006/cryo.1998.2115. PMID: 9787063.

Rui J, Tatsutani KN, Dahiya R, Rubinsky B. Effect of thermal variables on human breast cancer in cryosurgery. Breast Cancer Res Treat. 1999;53(2):185-192. DOI:10.1023/a:1006182618414.PMID: 10326796.

Kandel' EI, Biezin' OA. Kriohirurgiya opuholej golovnogo mozga [Cryosurgery of brain tumors]. Voprosy neirokhirurgii. 1971;35(1):3–9. Russian.

Chua KJ, Chou SK, Ho JC. An analytical study on the thermal effects of cryosurgery on selective cell destruction. J Biomech. 2007;40(1):100-116. DOI: 10.1016/j.jbiomech.2005.11.005. PMID: 16368100.

Polonskij JuZ, Kholyavin AI, Martynov BV et al. Stereotactic manipulator "Oreol": current state. Bulletin of the Russian Military Medical Academy. 2016;4(56):7-13.

Mironov AA, Komissarchik YaYu, Mironov VA. Methods of electron microscopy in biology and medicine: Methodological guide. Sankt-Petersburg: NAUKA; 1999. ISBN 5-02-026743-0.

Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2011-2015 [published correction appears in Neuro Oncol. 2018 Nov 17;:null]. Neuro Oncol. 2018;20(suppl_4):iv1-iv86.

DOI:10.1093/neuonc/noy131. PMID: 30445539. PMCID: PMC6129949.

Karampelas I, Sloan AE. Laser-Induced Interstitial Thermotherapy of Gliomas. Prog Neurol Surg. 2018;32:14-26.

DOI:10.1159/000469676. PMID: 29990970.

Russell SM, Kelly PJ. Incidence and clinical evolution of postoperative deficits after volumetric stereotactic resection of glial neoplasms involving the supplementary motor area. Neurosurgery. 2003;52(3):506-516.

DOI: 10.1227/01.neu.0000047670.56996.53. PMID: 12590674.

Martynov BV, Kholyavin AI, Parfenov VE, Nizkovolos VB, Trufanov GE, Fokin VA et al. Metod stereotaksicheskoj kriodestrukcii v lechenii bol'nyh s gliomami golovnogo mozga [Technique of stereotactic cryodestruction in management of patients with cerebral gliomas]. Zhurnal voprosy neirokhirurgii imeni N. N. Burdenko. 2011; 75(4):17–24. Russian.

Baust JG, Gage AA, Bjerklund Johansen TE, Baust JM. Mechanisms of cryoablation: clinical consequences on malignant tumors. Cryobiology. 2014; 68(1): 1-11. DOI:10.1016/j.cryobiol.2013.11.001. PMID: 24239684. PMCID: PMC3976170.

Wen J, Duan Y, Zou Y, et al. Cryoablation induces necrosis and apoptosis in lung adenocarcinoma in mice. Technol Cancer Res Treat. 2007;6(6):635-640. DOI: 10.1177/153303460700600607. PMID: 17994794.

Liu T, Wang X, Yin Z, Pan J, Guo H, Zhang S. Extracts from glioma tissues following cryoablation have proapoptosis, antiproliferation, and anti-invasion effects on glioma cells. Biomed Res Int. 2014;2014:236939.

DOI:10.1155/2014/236939. PMID: 24818132. PMCID: PMC4004080.

Rubinsky B, Lee CY, Bastacky J, Hayes TL. The mechanism of freezing in biological tissue: the liver. Cryo-Letters. 1987;8:379–381.

Giampapa VC, Oh C, Aufses AH Jr. The vascular effect of cold injury. Cryobiology. 1981;18(1):49-54.

DOI:10.1016/0011-2240(81)90005-5. PMID: 7471796.

He XZ, Wang QF, Han S, et al. Cryo-ablation improves anti-tumor immunity through recovering tumor educated dendritic cells in tumor-draining lymph nodes. Drug Des Devel Ther. 2015;9:1449-1458.

Published 2015 Mar 10. DOI:10.2147/DDDT.S76592.PMID: 25792805. PMCID: PMC4362656.

Gangi A, Cebula H, Cazzato RL, et al. "Keeping a Cool Head": Percutaneous Imaging-Guided Cryo-ablation as Salvage Therapy for Recurrent Glioblastoma and Head and Neck Tumours. Cardiovasc Intervent Radiol. 2020;43(2):172-175. DOI:10.1007/s00270-019-02384-6 PMID: 31797102.

Cebula H, Noel G, Garnon J, et al. The Cryo-immunologic effect: A therapeutic advance in the treatment of glioblastomas?. Neurochirurgie. 2020; 66(6):455-460. DOI:10.1016/j.neuchi.2020.06.135. PMID: 33045247.

Fulbert C, Gaude C, Sulpice E, Chabardès S, Ratel D. Moderate hypothermia inhibits both proliferation and migration of human glioblastoma cells. J Neurooncol. 2019; 144(3):489-499. DOI:10.1007/s11060-019-03263-3 PMID: 31482266

Zajchik AM, Poletaev AB, Churilov LP. "Self " recognition and interaction with "self " as a main activity of adaptive immune system. Vestnik of St. Petersburg University. 2013;1:7-16.

Il'chevich NV, Lisyanyj NI, Yanchij RI. Antibodies and regulation of body functions. Kiev: Naukova dumka; 1986.

Zaichik ASh, Churilov LP, Utekhin VJ. Autoimmune regulation of genetically determined cell functions in health and disease. Pathophysiology. 2008;15(3):191-207. DOI: 10.1016/j.pathophys.2008.07.002. PMID: 18760573.

Alarcón-Segovia D, Ruíz-Argüelles A, Fishbein E. Antibody penetration into living cells. I. Intranuclear immunoglobulin in peripheral blood mononuclear cells in mixed connective tissue disease and systemic lupus erythematosus. Clin Exp Immunol. 1979;35(3):364-375. PMID: 378481. PMCID: PMC1537612.

Alarcon-Segovia D, Llorente L, Ruiz-Arguelles A. Antibody penetration into living cells. III. Effect of antiribonucleoprotein IgG on the cell cycle of human peripheral blood mononuclear cells. Clin Immunol Immunopathol. 1982; 23(1):22-33. DOI: 10.1016/0090-1229(82)90067-8. PMID: 6980072.